Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking.

نویسندگان

  • J Maxwell Donelan
  • Rodger Kram
  • Arthur D Kuo
چکیده

In the single stance phase of walking, center of mass motion resembles that of an inverted pendulum. Theoretically, mechanical work is not necessary for producing the pendular motion, but work is needed to redirect the center of mass velocity from one pendular arc to the next during the transition between steps. A collision model predicts a rate of negative work proportional to the fourth power of step length. Positive work is required to restore the energy lost, potentially exacting a proportional metabolic cost. We tested these predictions with humans (N=9) walking over a range of step lengths (0.4-1.1 m) while keeping step frequency fixed at 1.8 Hz. We measured individual limb external mechanical work using force plates, and metabolic rate using indirect calorimetry. As predicted, average negative and positive external mechanical work rates increased with the fourth power of step length (from 1 W to 38 W; r(2)=0.96). Metabolic rate also increased with the fourth power of step length (from 7 W to 379 W; r(2)=0.95), and linearly with mechanical work rate. Mechanical work for step-to-step transitions, rather than pendular motion itself, appears to be a major determinant of the metabolic cost of walking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energetic consequences of walking like an inverted pendulum: step-to-step transitions.

Walking like an inverted pendulum reduces muscle-force and work demands during single support, but it also unavoidably requires mechanical work to redirect the body's center of mass in the transition between steps, when one pendular motion is substituted by the next. Production of this work exacts a proportional metabolic cost that is a major determinant of the overall cost of walking.

متن کامل

Mechanical and metabolic determinants of the preferred step width in human walking.

We studied the selection of preferred step width in human walking by measuring mechanical and metabolic costs as a function of experimentally manipulated step width (0.00-0.45L, as a fraction of leg length L). We estimated mechanical costs from individual limb external mechanical work and metabolic costs using open circuit respirometry. The mechanical and metabolic costs both increased substant...

متن کامل

Metabolic cost and mechanical work for the step-to-step transition in walking after successful total ankle arthroplasty.

The aim of this study was to investigate whether impaired ankle function after total ankle arthroplasty (TAA) affects the mechanical work during the step-to-step transition and the metabolic cost of walking. Respiratory and force plate data were recorded in 11 patients and 11 healthy controls while they walked barefoot at a fixed walking speed (FWS, 1.25 m/s) and at their self-selected speed (S...

متن کامل

Evaluation of optimal step length in a seven-link model with margin of stability method

In a walking cycle design, maximizing the upright balance should be considered in addition to the kinematic constraints, energy consumption rate must be considered. The purpose of this study is to find the optimal step length obtained for each person according to the physical features. In this research, in order to minimize energy consumption rate by considering maximum balance two cost functio...

متن کامل

Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.

In human walking, each transition to a new stance limb requires redirection of the center of mass (COM) velocity from one inverted pendulum arc to the next. While this can be accomplished with either negative collision work by the leading limb, positive push-off work by the trailing limb, or some combination of the two, physics-based models of step-to-step transitions predict that total positiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 205 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2002